
Cloud Computing and an End-System Redundancy
Elimination Service for Enterprises

Ganapathi Avabrath,

Asst. Professor,Impact College of Engineering & Applied Sciences, Bangalore

Abstract-In many enterprises today, WAN optimizers are
being deployed in order to eliminate redundancy in network
traffic and reduce WAN access costs. In this paper, we present
the design and implementation of ERE, an alternate approach
where redundancy elimination (RE) is provided as an end
system service. Unlike middleboxes, such an approach benefits
both end-to-end encrypted traffic as well as traffic on last-hop
wireless links to mobile devices.
ERE needs to be fast, adaptive and parsimonious in memory
usage in order to opportunistically leverage resources on end
hosts. Thus, we design a new fingerprinting scheme called
SampleByte that is much faster than Rabin fingerprinting
while delivering similar compression gains. Unlike Rabin
fingerprinting, SampleByte can also adapt its CPU usage
depending on server load. Further,we introduce optimizations
to reduce server memory footprint by 33-75% compared to
prior approaches.Using several terabytes of network traffic
traces from 11 enterprise sites, testbed experiments and a pilot
deployment,we show that ERE delivers 26%bandwidth
savings on average, processes payloads at speeds of 1.5-4Gbps,
reduces end-to-end latencies by up to 30%, and translates
bandwidth savings into equivalent energy savingson mobile
smartphones.

Key words: cloud computing, redundancy, latency, encryption

1. DEFINING THE CLOUD COMPUTING
Cloud computing refers to both the applications delivered
as services over the Internet and the hardware and systems
software in the data centers that provide those services. The
services themselves have long been referred to as Software
as a Service (SaaS).a Some vendors use terms such as IaaS
(Infrastructure as a Service) and PaaS (Platform as a
Service) to describe their products, but we eschew these
because accepted definitions for them still vary widely. The
line between "low-level" infrastructure and a higher-level
"platform" is not crisp. We believe the two are more alike
than different, and we consider them together. Similarly,
the related term "grid computing," from the high-
performance computing community, suggests protocols to
offer shared computation and storage over long distances,
but those protocols did not lead to a software environment
that grew beyond its community.
Cloud computing, the long-held dream of computing as a
utility, has the potential to transform a large part of the IT
industry, making software even more attractive as a service
and shaping the way IT hardware is designed and
purchased. Developers with innovative ideas for new
Internet services no longer require the large capital outlays
in hardware to deploy their service or the human expense to
operate it. They need not be concerned about
overprovisioning for a service whose popularity does not
meet their predictions, thus wasting costly resources, or

underprovisioning for one that becomes wildly popular,
thus missing potential customers and revenue. Moreover,
companies with large batch-oriented tasks can get results as
quickly as their programs can scale, since using 1,000
servers for one hour costs no more than using one server
for 1,000 hours. This elasticity of resources, without paying
a premium for large scale, is unprecedented in the history
of IT.

2. INTRODUCTION
With the advent of globalization, networked services have a
global audience, both in the consumer and enterprise
spaces. For example, a large corporation today may have
branch offices at dozens of cities around the globe. In such
a setting, the corporation’s IT admins and network planners
face a dilemma. On the one hand, they could concentrate IT
servers at a small number of locations. This might lower
administration costs, but increase network costs and latency
due to the resultant increase in WAN traffic. On the other
hand, servers could be located closer to clients; however,
this would increase operational costs.
This paper arises from the quest to have the best of both
worlds, specifically, having the operational benefits of
centralization along with the performance benefits of
distribution. In recent years, protocol-independent
redundancy elimination, or simply RE has helped bridge
the gap by making WAN communication more efficient
through elimination of redundancy in traffic. Such
compression is typically applied at the IP or TCP layers, for
instance, using a pair of middleboxes placed at either end
of a WAN link connecting a corporation’s data center and a
branch office. Each box caches payloads from flows that
traverse the link, irrespective of the application or protocol.
When one box detects chunks of data that match entries in
its cache (by computing “fingerprints”of incoming data and
matching them against cached data), it encodes matches
using tokens. The box at the far end reconstructs original
data using its own cache and the tokens. This approach has
seen increasing deployment in “WAN optimizers”.

3. MOTIVATION
In exploring an end-point based RE service, one of the
main issues we hope to address is whether such a service
can offer bandwidth savings approaching that of WAN
optimizers. To motivate the likely benefits of an end-point
based RE service, we briefly review two key findings from
our earlier study [8] of an IP-layer WAN Optimizer.
First, we seek to identify the origins of redundancy.
Specifically, we classify the contribution of redundant byte
matches to bandwidth savings as either intra-host(current

Ganapathi Avabrath / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5333-5335

www.ijcsit.com 5333

and matched packet in cache have identical source-
destination IP addresses) or inter-host (current and matched
packets differ in at least one of source or destination IP
addresses). We were limited to a 250MB cache size given
the large amount of meta-data necessary for this analysis,
though we saw similar compression savings for cache sizes
up to 2GB. Surprisingly, our study revealed that over 75%
of savings were from intra-host matches. This implies that a
pure end-to-end solution could potentially deliver a
significant share of the savings obtained by an IP WAN
optimizer, since the contribution due to inter-host matches
is small. However, this finding holds good only if end
systems operate with similar (large) cache sizes as
middleboxes, which is impractical. This brings us to the
second key finding.

4 DESIGN GOALS
ERE is designed to optimize data transfers in the direction
from servers in a remote data center to clients in the
enterprise, since this captures a majority of enterprise
traffic. We now list five design goals for ERE—the first
two design goals are shared to some extent by prior RE
approaches, but the latter three are unique to ERE.

1. Transparent operation: For ease of deploy-ability,the

ERE service should require no changes to existing
applications run within the data center or on clients.

2. Fine-grained operation: Prior work has shown that
many enterprise network transfers involve just a few
packets. To improve end-to-end latencies and provide
bandwidth savings for such short flows, ERE must
work at fine granularities, suppressing duplicate byte
strings as small as 32-64B. This is similar to ,but
different from earlier proposals for file-systems and
Web caches where the sizes of redundanciesidentified
are 2-4KB.

3. Simple decoding at clients: ERE’s target client set
includes battery- and CPU-constrained devices such as
smart-phones. While working on fine granularities can
help identify greater amounts of redundancy, it can
also impose significant computation and decoding
overhead, making the system impractical for these
devices. Thus, a unique goal is to design algorithms
that limit client overhead by offloading all compute-
intensive actions to servers.

4. Fast and adaptive encoding at servers: ERE is
designed to opportunistically leverage CPU resources
on end hosts when they are not being used by other
pplications.
Thus, unlike commercial WAN optimizers and prior
RE approaches [20], ERE must adapt its use of CPU
based on server load.

5. Limited memory footprint at servers and clients:
ERE relies on data caches to perform RE.
However,memory on servers and clients could be
limited and may be actively used by other applications.
Thus, ERE must use as minimal memory on end-hosts
as possible through the use of optimized data
structures.

5 ERE DESIGN
In this section, we describe how ERE’s design meets the
above goals.
ERE introduces RE modules into the network stacks of
clients and remote servers. Since we wish to be transparent
to applications, ERE could be implemented either at the IP-
layer or at the socket layer (above TCP). As we argue , we
believe that socket layer is the right place to implement
ERE. Doing so offers key performance benefits over an IP-
layer approach, and more importantly, shields EndRE from
network-level events (e.g., packet losses and reordering),
making it simpler to implement.
There are two sets of modules in ERE, those belonging on
servers and those on clients. The server-side module is
responsible for identifying redundancy in network data by
comparing against a cache of prior data, and encoding the
redundant data with shorter meta-data.The meta-data is
essentially a set of <offset, length> tuples that are
computed with respect to the client-side cache. The client-
side module is trivially simple: it consists of a fixed-size
circular FIFO log of packets and simple logic to decode the
meta-data by “de-referencing” the offsets sent by the
server. Thus, most of the complexity in ERE is mainly on
the server side and we focus on that here. Identifying and
removing redundancy is typically accomplished [20, 7] by
the following two steps:
• Fingerprinting: Selecting a few “representative regions”

for the current block of data handed down by
application(s). We describe four fingerprinting
algorithms that differ in the trade-off they impose
between computational overhead on the server and the
effectiveness of RE.

• Matching and Encoding: Once the representative regions
are identified, we examine two approaches for
identification of redundant content : (1) Identifying
chunks of representative regions that repeat in full
across data blocks, called Chunk-Match and (2)
Identifying maximal matches around the representative
regions that are repeated across data blocks, called
Max- Match. These two approaches differ in the trade-
off between the memory overhead imposed on the
server and the effectiveness of RE.

6 IMPLEMENTATION

In this section, we discuss our implementation of ERE.
We start by discussing the benefits of implementing ERE at
the socket layer above TCP.
6.1 Performance benefits
Bandwidth: In the socket-layer approach, RE can operate
at the size of socket writes which are typically larger than
IP layer MTUs. While Max-Match and Chunk-Match do
not benefit from these larger sized writes since they operate
at a granularity of 32 bytes, the large size helps produce
higher savings if a compression algorithm like GZIP is
additionally applied, as evaluated.
Latency: The socket-layer approach will result in fewer
packets transiting between server and clients, as opposed to
the IP layer approach which merely compresses packets
without reducing their number. This is particularly useful in
lowering completion times for short flows, as evaluated.

Ganapathi Avabrath / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5333-5335

www.ijcsit.com 5334

6.2 End-to-end benefits
Encryption: When using socket-layer RE, payload
encrypted in SSL can be compressed before
encryption,providing RE benefits to protocols such as
HTTPS. Iplayer RE will leave SSL traffic uncompressed.

Cache Synchronization: Recall that both Max-Match and
Chunk-Match require caches to be synchronized between
clients and servers. One of the advantages of implementing
ERE above TCP is that TCP ensures reliable in-order
delivery, which can help with maintaining cache
synchronization. However, there are still two issues that
must be addressed.
First, multiple simultaneous TCP connections may be
operating between a client and a server, resulting in
ordering of data across connections not being preserved.
To account for this, we implement a simple sequence
number-based reordering mechanism. Second, TCP
connections may get reset in the middle of a transfer. Thus,
packets written to the cache at the server end may not even
reach the client, leading to cache inconsistency. One could
take a pessimistic or optimistic approach to maintaining
consistency in this situation. In the pessimistic approach,
writes to the server cache are performed only after TCP
ACKs for corresponding segments are received at the
server. The server needs to monitor TCP state, detect
ACKs, perform writes to its cache and notify the client to
do the same. In the optimistic approach, the server writes to
the cache but monitors TCP only for reset events. In case of
connection reset (receipt of a TCP RST from client or a
local TCP timeout), the server simply notifies the client of
the last sequence number that was written to the cache for
the corresponding TCP connection. It is then the client’s
responsibility to detect any missing packets and recover
these from the server. We adopt the optimistic approach of
cache writing for two reasons: (1) Our redundancy analysis
indicated that there is high temporal locality of matches; a
pessimistic approach over a high bandwidth-delay product
link can negatively impact compression savings; (2) The
optimistic approach is easier to implement since only for
reset events need to be monitored rather than every TCP
ACK.

7. CONCLUSION
Using extensive traces of enterprise network traffic and
testbed experiments, we show that our end-host based
redundancy elimination service, EndRE, provides average
bandwidth gains of 26% and, in conjunction with DOT, the
savings approach that provided by a WAN optimizer.
Further, ERE achieves speeds of 1.5-4Gbps, provides
latency savings of up to 30% and translates bandwidth
savings into comparable energy savings on mobile
smartphones. In order to achieve these benefits,EndRE
utilizes memory and CPU resources of end systems.
For enterprise clients, we show that median memory
requirements for ERE is only 60MB. At the server end, we
design mechanisms for working with reduced memory and
adapting to CPU load.
Thus, we have shown that the cleaner semantics of end-to-
end redundancy removal can come with considerable
performance benefits and low additional costs. This makes
ERE a compelling alternative to middleboxbased
approaches.

REFERENCES
[1] Cisco Wide Area Application Acceleration Services.

http://www.cisco.com/en/US/products/ps5680/Products Sub
Category Home.html.

[2] Jenkins Hash. http://burtleburtle.net/bob/c/lookup3.c.
[3] Peribit Networks (Acquired by Juniper in 2005): WAN Optimization

Solution. http://www.juniper.net/.
[4] Power Monitor, Monsoon Solutions. http://www.msoon.com/

powermonitor/powermonitor.html.
[5] Riverbed Networks: WAN Optimization. http://www.riverbed.

com/solutions/optimize/.
[6] Windows Filtering Platform. http://msdn.microsoft.com/ en-

us/library/aa366509(V.85).aspx.
[7] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet

Caches on Routers: The Implications of Universal Redundant Traffic
Elimination.In ACM SIGCOMM, Seattle, WA, Aug. 2008.

[8] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee. Redundant
in Network Traffic: Findings and Implications. In ACM
SIGMETRICS, Seattle, WA, June 2009.

[9] S. Annapureddy, M. J. Freedman, and D. Mazires. Shark: Scaling
file servers via cooperative caching. In NSDI, 2005.

[10] M. Arlitt and C. Williamson. An analysis of tcp reset behavior on the
internet. ACM CCR, 35(1), 2005.

[11] K. C. Barr and K. Asanovic. Energy-aware lossless data
compression. IEEE Transactions on Computer Systems, 24(3):250–
291, Aug 2006.

[12] F. Douglis and A. Iyengar. Application-specific delta-encoding via
resemblance detection. In USENIX, 2003.

Ganapathi Avabrath / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5333-5335

www.ijcsit.com 5335

